

Table of Contents

Chapter 1: Thesis Intent ... 2

Unreal Engine ... 3

What is a game engine? .. 3

What’s so special about Unreal?... 3

Who else is benefitting from Unreal outside of game developers? .. 4

Animatronics .. 6

What are Animatronics? .. 6

How do you make them move? .. 6

What’s so important about the history of controls? .. 7

Combining Unreal and Animatronics ... 8

Chapter 2: Interactive Demonstration .. 9

How are these animation tools being demonstrated? ..10

Meet Bean Bag the Penguin...11

The Animatronic Figure ..11

The Pebble Game ..12

Chapter 3: How it Works .. 13

Linking the Digital and Physical World ...14

Joystick to Unreal ... 14

Maya to Unreal .. 14

Animation onto Player Character ... 15

Digital Figure to Physical Figure .. 17

Game Layout and Flow of Data ...22

Using Unreal’s Animation Features...23

 1

State Machines .. 24

What is this feature? .. 24

How is this feature normally used in game development? ... 25

What problem does this solve for Animatronics? .. 26

How was this used in my thesis demonstration? ... 26

Animation Blending ... 27

What is this feature? .. 27

How is this feature normally used in game development? ... 27

What problem does this feature solve for Animatronics? ... 27

How was this used in my thesis demonstration? ... 28

Aim Offsets ... 29

What is this feature? .. 29

How is this feature normally used in game development? ... 30

What problem does this feature solve for Animatronics? ... 30

How was this used in my thesis demonstration? ... 31

Chapter 4: Conclusion .. 32

Glossary of Terms ... 34

Works Cited ... 35

 2

Chapter 1: Thesis Intent

 3

Unreal Engine

What is a game engine?
A game engine is a software framework that assists developers in creating video

games. One way I like to describe it is “what Adobe Photoshop is to digital artists.”

Photoshop provides the canvas and all the tools needed for a digital artist to paint a

picture. It handles all the coding and computation under the hood so that the artist doesn’t

need to worry about how the brushes work (or even how to code one from scratch every

time). Instead, the artist has the freedom to focus on creating art.

Game Engines essentially provide the same for game developers. They give the

developer the environment and tools needed to create a video game. However, unlike

Photoshop, game engines also give developers more flexibility by allowing them to go in

and edit or add code to make the game exactly what they want.

 For many years now, game engines have been an integral part of video game

development. Although most game engines are proprietary and only available for use by

the game studio that created them, some game engines are made available for anyone.

One such engine is the Unreal Engine created and developed by Epic Games.

A splash screen from the Unreal Engine

What’s so special about Unreal?
 The Unreal Engine - which I will refer to as “Unreal” from here on out - has

experienced a dramatic uptick in popularity over the last couple years. Unreal has many

 4

desirable features that aid in its popularity, such as: easy to learn software with plenty of

tutorials and documentation on the web, extremely advanced lighting and rendering

capabilities, and an affordable price. For most users looking to learn Unreal, it is completely

free, making it accessible to hobbyists, students, and professionals.

All of these features, combined with hitting the market at just the right time, have

given Unreal another edge over its competitors: Unreal has extended beyond the reach of

the gaming industry.

Who else is benefitting from Unreal outside of game developers?
 Although Unreal was created to solve challenges faced with creating a video game,

many other industries often find themselves facing the same challenges. Whereas these

industries typically have their own specialized software, Unreal has become an accessible,

one-stop-shop software that brings all of these features into one easy to use program.

Filmmakers can use Unreal to create VFX, animations, or even complete animated films.

A still from a short film created in Unreal 4 by Weta Digital

Unreal is used to create the background on LED panels surrounding the set of the Mandolorian

Architects can use Unreal to create astonishingly realistic renderings of spaces as they

tweak and edit the scene on the fly.

 5

An architectural rendering showcasing Unreal’s Lumen (lighting) technology

Even some in the automotive industry have started using Unreal to create a vehicle’s

interactive center-console display.

Left and Right: The new Hummer EV by GMC will use Unreal for its center console display

These are just some of many ways that Unreal is being used creatively to solve

industry-specific problems in the real world. I have no doubt that the engine will continue

to grow and develop to benefit a wider array of needs as the demand for it rises. What

interests me most, however, is the current impact that Unreal can have on the future of

animatronics.

 6

Animatronics

What are Animatronics?
“Animatronic” or “Animated Figure” is a generic term often used to describe a puppet

controlled by electromechanical means. In 1961, Walt Disney coined and later trademarked

the term “Audio-Animatronic”

to refer to the robotic

characters being created at

WED Enterprises for Walt

Disney’s Enchanted Tiki Room

attraction. Although these

were not the first animatronic

figures, they were the first to

have their movements

programmatically synced with

sound. This was also the first

of many revolutionary

innovations that the Disney

company has pioneered in

the field of animatronics.

How do you make them move?
Syncing audio with motion

may not seem that impressive

today, but it was no easy feat

for engineers at the time.

Animators had to

painstakingly hand-carve

notches into discs for a cam

and follower mechanism to trigger the birds’ motions. Later the system was updated so

that motion triggers were marked onto magnetic tape instead. Although these methods of

animation worked for their intended purpose, they were tedious and provided little

flexibility for changes.

The 60s were very prosperous for animatronics as Disney Imagineers tried various

control systems to find one to fit all their needs. Not long after the Tiki Room opened, WED

Walt Disney admiring one of the famous Enchanted Tiki Room

animatronic figures

 7

Enterprises debuted another unique control system in “Great Moments with Mr. Lincoln” at

the World’s Fair. This animation method involved rigging animator Wathel Rogers into a

primitive motion capture harness to record his movements onto the figure. The end result

was an incredible 5 minutes and

15 seconds of Abraham Lincoln

speaking before an audience

with the motion and subtleties

of a real human being.

In 1969, advancements in

computer technology allowed

for the creation of the Digital

Animation Control - or DAC -

system. Now, animators could

use knobs and buttons to

record, edit, and playback

animation onto the figure in

real-time. This was an efficient

and effective way of perfecting

animatronic animation and

formed the basis of what Disney

has used until today.

What’s so important about the
history of controls?
Over the past 50 years, many animatronics companies have made a name for themselves

in the industry, but the Disney company has always been the gold-standard. One of the

ways that Disney historically set itself apart was based on a principle shared by all of its

control systems: good animation is the driving force behind every figure’s movement.

Nothing is random and nothing is out of time. Every movement or pause is intentionally

crafted by someone who understands the nuances of animation.

In the past decade, physical knobs and buttons have mostly given way to screens and

graphs but that defining principle has remained the same. It has become the industry

standard to use Maya to create animations on a digital figure which will then be replayed

on a physical figure. Each company may have its own unique system for exporting

animation curves onto a figure’s motors, but they generally do everything they can to

uphold the integrity of the original animation.

Animator Wathel Rogers demos the live motion-capture system

used on Walt Disney's Carousel of Progress

 8

Combining Unreal and Animatronics
Although this heavy reliance on man-made animation results in more lifelike figures,

using pre-recorded Maya animations alone creates a figure that must follow a pretty strict

routine. In order for a figure to cleanly loop through a show in front of an audience, either

the final frame of animation must match the beginning frame of the next — or a computer

must figure out how to smoothly move the figure between its final and initial poses. For

figures that need to be interrupted at irregular intervals (like a boat ride where vehicles

may not always move at the same speed) the animatronic must be able to smoothly

transition to the main show animation from any point during the idle animation. Interactive

animatronics also presents a unique challenge.

Many companies have developed in-house solutions to these issues, but the

animatronics industry is not alone in facing these challenges. For years, the video game

industry has also faced the same problems when creating programming digital characters.

Nobody wants to see abrupt or janky animations in games, so developers have spent years

perfecting tools to fix this.

 Of course, with Unreal being one of the most popular game engines on the market

today, it is filled with various tools to aid developers in programming complex digital

characters. With this thesis, I intend to explore the many ways Unreal can be used to create

a life-like animatronic character through its advanced animation capabilities.

 9

Chapter 2: Interactive Demonstration

 10

How are these animation tools being demonstrated?
In order to explore Unreal’s animation capabilities on a physical figure, I decided to

create an interactive demonstration that would highlight not only the actual functionality of

the animation tools - but create a compelling experience to show just how much real-time

animation can improve the audience’s emotional connection with the figure.

To accomplish this, I decided to create a video game where the playable character

was a physical animatronic. Players would be prompted to aid the character in their task

and would control the figure much like a regular video game character. This means that

instead of actually puppeteering the individual movements of the character, the player

merely guides the character’s actions in the same way that one would control any regular

video game character. To create the game around the animatronic, the environment is

projected on screens around the character in real-time. This helps create the illusion of a

video game character that has come out of the screen and exists in our world.

To create the final experience, I needed a computer capable of running Unreal at a

high enough framerate, some projectors, and screens, and of course, an animatronic

figure. However, in order to tell if my program was working and if the data coming out of

Unreal was even usable, I couldn’t use just any moving figure. I needed an animatronic that

could move in such a way that would make sense for the game and, most importantly, had

enough resolution in its motors to move smoothly. I also needed the figure to have a one-

to-one digital version that was rigged exactly how it moved in real life. Since I did not

already have one available, I decided to create an animatronic character specifically for the

purpose of my thesis and this game.

 11

Meet Bean Bag the Penguin

Bean Bag is a Gentoo penguin living a happy and peaceful life with his girlfriend in

Antarctica. He’s a little clumsy and he’s certainly not in the best athletic shape, but he

makes up for it with his big heart and loveable attitude. As is customary with Gentoo

penguins, he has decided to propose to his girlfriend with the nicest pebbles he can find.

You -- the player of this game – have been tasked with helping Bean Bag find and collect

the best pebbles to bring back to his girlfriend.

The Animatronic Figure
Bean Bag in real life is a 12-

function animatronic figure

that uses Dynamixel motors

and GoBilda aluminum parts.

He is about 25 inches tall and

designed based on real-life

Gentoo penguins. I used gears

to increase the resolution and the torque of his motors so that

all of his motions are as smooth as I can make them.

To create the final figure, I started by sculpting him in Zbrush

and then used Fusion to create his mechanical design and

Maya for rigging and animating him. By using this digital

pipeline, I was able to have a one-to-one digital copy of my physical figure. This is crucial for

programming a figure via animation data. His 12 functions are: full figure spin, body tilt, tail

waggle, body foresway, chest turn, chest tilt, wing rotate, wing flap, head turn, head tilt,

head nod, and jaw open/close.

Bean Bag’s mech design in

Fusion

A Gentoo penguin at the Edinburgh

Zoo bringing a pebble to his mate.

 12

For the figure finishing, I created a

pattern based on a 3D printed maquette

and sewed together a stretchy fleece

skin. Under that skin is a second skin

containing stuffing and weighted beads

that help create his plushy look. The use

of the beads and the overall effect of

these “fat sacks” is where he gets his

name.

The Pebble Game
Players are tasked with aiding Bean Bag

in his quest to find the perfect pebble for

his lover. He is controlled via a Logitech

Extreme 3D Pro joystick and can perform

various actions such as idling, walking,

braying, and interacting with pickups.

The player uses the joystick to maneuver Bean Bag around the level to find each of the

glowing pebbles to bring back to the nest. Upon finding these pebbles, the player can press

the trigger button to pick them up. This causes Bean Bag to play his “pickup” animation and

the pebble disappears from the screen. The player then maneuvers Bean Bag back to the

nest and deposits the pebble he has just picked up. The pebble appears in the nest and the

game is completed once all of the pebbles have been found. Standing beside the nest in

the virtual world is Bean Bag’s girlfriend. She interacts with the physical Bean Bag figure,

helping tie together the digital and physical world.

Bean Bag as an animatronic figure.

Bean Bag’s girlfriend, nest, and game environment as seen through the Unreal Editor.

 13

Chapter 3: How it Works

 14

Linking the Digital and Physical World

Joystick to Unreal
Unreal’s Third Person template already has

complete controller functionality attached to a

humanoid character. These controller inputs

have been mapped to let the player character

run around, jump and interact with items. Since

my flight stick controller differs in function and

layout from a generic, two thumb stick

controller, I had to alter the settings in order to

map my joystick to the functions I wanted.

These settings can be found in the Project

Settings under ‘Engine - Input’ and are split into

two categories: Action Mappings and Axis

Mappings. Action Mapping refers to button

presses, and Axis Mapping refers to the movement of the joystick. Here, I assigned the

trigger button as “Interact” and then assigned the appropriate axes for moving my

character around.

Maya to Unreal
Although Unreal provides robust tools for applying animation

assets onto a character, its tools for creating animation from

scratch are rudimentary. In order to uphold the intention of

placing clean and professional animation onto a figure, I used

Maya to rig and animate my character.

I uploaded my mechanical design from Fusion into Maya and

rigged it so that the joints would precisely match the

movements of the motors. Each motor on my physical figure

corresponds with a joint in Maya that has limits set to match

the motor’s min and max position. Then, the animation data

(angle of each joint at each frame) can be mapped onto the

servos in order to control the figure. This is the industry standard for controlling

animatronics for themed entertainment.

The default input settings for the Third Person

template

My mech design rigged in

Maya

 15

A programmer will then usually use a script to export the animation curves as data that can

be read by another program for playback on to motors. Since I want to use the actual

animations and not just the curve data, I will instead export the animation clips and rigged

character as FBX files. These files can be imported into Unreal and the animation assets

can then be associated with and used on my player character.

Animation onto Player Character
 When importing one of these FBX files into Unreal, it creates a Skeletal Mesh,

Skeleton, Physics Asset, and - if there is animation present - an Animation Sequence. To keep

things simple, I am only focused on using the Skeletal Mesh and the Animation Sequences.

From Left to Right: The Animation Blueprint, Animation Sequences, Skeletal Mesh, Physics Asset, and

Skeleton created for the default Third Person character

The Skeletal Mesh contains the rigged character. The

Animation Sequence is an animation that is associated

with a skeletal mesh and can be played on that skeletal

mesh. Oftentimes, a character will have many

individual animation sequences for the various actions

that the character can perform. These often include

idles, running, jumping, and more. An Animation

Blueprint is then responsible for playing those

Animation Sequences on a Skeletal Mesh.

In order to connect my character to both the player’s

inputs and the Animation Blueprint, I created a pawn The default Third Person Skeletal Mesh

 16

and placed it in the level. A pawn is a kind of actor that can be possessed and controlled by

a player. An actor is an object that can be instantiated by being placed in a level. It may help

to think of blueprints, actors, and pawns in an Object Oriented Programming sense. The

assets in the content browser are the classes, while the assets that have been placed in the

level are their instances.

The assets in the Content Browser above are like classes, and the assets in the Outliner to the right are like

instances.

Inside the pawn, I associated the “CharacterMesh” with the skeletal mesh of my

animatronic. This is also where I linked the Animation Blueprint I created earlier to the

character. After placing the pawn in the level, it is able to be possesed and controlled as

our playable avatar.

The player pawn containing the skeletal mesh of my animatronic

 17

Digital Figure to Physical Figure
For this project, I used Dynamixel motors. These “smart servos'' have internal computers

that store settings such as min and max position, motor ID,

current position, and are controlled via serial communication.

In order to move them alongside the digital figure’s joints, I

needed to get the rotational values of the joints every game

tick and map those numbers to the servo’s ranges. Then the

new servo positional data could be packed into an instruction

and sent over USB to the motors’ control board.

I tried two different methods to get data out of Unreal and on

to the motors. First, I used UDP to send data to a separate “in-

between” program and the second, I created a direct serial link

between Unreal and my motor control board.

UDP Communication

 UDP (User Datagram

Protocol) is a protocol for sending

data over a network. Unlike its

counterpart TCP, UDP is useful for

broadcasting and streaming data

since it needs no confirmation that

the data has been received. It merely

sends data packets over the network

without waiting for a connection to

be established and confirmed by the

listener. This is a method I have used

in my internships to get data

between Unreal to helper programs

and is originally how I controlled my

physical figure for this project.

One of the benefits of using UDP is

that your in-between program can

easily live on a different computer

than the one that is running the Unreal Project. This can be especially useful if your

program is managing inputs and outputs across multiple systems. For example, if you were

using a resource intensive input program (such as using camera input to send data back

An XL430-W250-T servo motor,

one of the servos I am using

on my figure

Data being packed into a byte array to send out of Unreal

 18

and forth to Unreal) your camera program could live on one computer and use UDP to talk

to Unreal on a different computer. Since I am not really doing anything resource intensive

in my in-between program, I let it live on the computer running Unreal and had two

programs talk over the localhost (127.0.0.1) network.

To get the data out of Unreal, I used a UDP Plugin to stream the joint angles as I

read them off of the character. In my level blueprint, I read the angle of the joints every

game tick. As I iterated through each joint, I passed the angle through the “Finterp To” node

to interpolate from the last read value based on the amount of time that has passed since

the last tick. This helps to smooth the data and helps with framerate inconsistencies.

Reading the angle of a joint and interpolating the desired position from the last tick

Those numbers were then packed into an array of unsigned 8-bit integers and sent over

the network. The final packet was structured like the table below and was a total of 14

bytes long.

Header

2 Bytes

Servo 1 Data

2 Bytes

...Servo N

2 Bytes

746B [Byte 1 of servo 1 position]

[Byte 2 of servo 1 position]

[Byte 1 of servo N position]

[Byte 2 of servo N position]

My in-between program was listening on the designated port and expecting to receive

packets exactly matching the standard above. Once it received a packet and verified that

the header matched what it would expect, the program would break apart the data and

send it to the servos using the Dynamixel SDK’s “Bulk Write” function. This function allows

the user to write to multiple servos at a time using only one instruction packet.

 19

A code block from my in-between program responsible for processing, packing, and sending the data

received from Unreal

This technically worked for getting data onto the motors but did not produce smooth

enough results for my desired outcome. Although UDP is the fastest network

communication protocol, it still introduces some delays into the overall data path from

joint to servo. Also, since there are no checks, data can be lost. Another problem comes

from Unreal’s inefficiencies in regard to “Event Tick” and Blueprint Programming in general.

This results in stuttered movements on the physical servos. This could be remedied by

interpolation in my C++ program, but I decided to try to eliminate as much data loss from

the source as possible. This led me to try a direct connection between Unreal and my

servos.

Serial Communication

In an effort to reduce any and all delays in communication, I wanted to create the

most direct path from joint to motor. To do this I decided to integrate my motor controller

with my Unreal project and avoid using blueprints as much as possible. Unreal lets you

program with C++ instead of blueprints, but if you want to communicate between the two,

you need to use Unreal’s requirements for coding. These limit the kinds of data types you

can use and although Unreal often provides alternatives to these types, they also can

present frustrations and slowdowns for me. This was especially challenging when I needed

 20

to incorporate Dynamixel’s CRC (checksum) calculation code into my own.

Dynamixel’s CRC calculation code. It contains data types unsigned short (16-bit int), arrays, and other data

types native to C++ but not Unreal.

Since I still wanted to keep my blueprint that reads joint angles intact but also wanted to

use types and functions that Unreal would not allow, I had to find a work-around. I created

a public C++ file that would serve as the bridge between Unreal and the regular C++ code I

needed. I created a C++ module named “DataBridge” for this purpose. This file contains a

list of joint data that is updated by Unreal every tick.

I then created a C++ module

called “SerialSender” and placed it

in the directory of my DataBridge

files. SerialSender does not

interact directly with my Unreal

project, so I’m able to use all the

data types and functions I need. It

merely receives data from

DataBridge as it is updated by

Unreal.

Another method I employed to

speed up the flow of instructions

to my motors was multi-

threading. SerialSender runs on a

dedicated thread and interprets

and sends data to the servos as

fast as it can. It checks every cycle

to see if the motor’s data in

DataBridge has been updated. If

so, it stores that data as the new

My DataBridge file that updates SerialSender’s target servo

positions

 21

target position and begins incrementing the servo towards that target. Since it is running

on its own thread and can make up for missing data, the flow rate of data-to-servos is

independent of Unreal’s tick.

Due to some technical issues, I decided to forgo the Dynamixel SDK and simply

create the serial data packet myself. I only needed to write the goal position of the servos

and therefore only needed to create one kind of instruction packet. This is similar to what I

was doing before with the UDP packet, but this time with a stricter standard and more data

to be sent. Luckily, Dynamixel provides extensive documentation that makes this process

easier. Here is the structure of the Dynamixel “Bulk Write” instruction packet that I used:

The end result is a 118-byte packet containing all of the 12 servo’s positional instructions

being sent as fast as the program can run. This resulted in much smoother motion and is

the method I used in my final product.

Header

2 Bytes

Reserved

1 Byte

Packet ID

1 Byte

Length

2 Bytes

Instruction

1 Byte

Parameters

N Bytes

CRC

Checksum

2 Bytes

0xFFFFFD 0x00 0xFE [Length of

Parameters]

0x93 [Servo ID, Instruction

Addr, Data Length,

Data to be written]

repeated for every

servo

[Checksum

calculation]

 22

Game Layout and Flow of Data

Inside Unreal

 23

Using Unreal’s Animation Features
 I used an Animation Blueprint to create the behavior of my character. The

Animation Blueprint is responsible for playing the various Animation Sequences associated

with the Skeletal Mesh and provides various tools for creating realistic and responsive

motion. It also provides a “brain” for the character, changing the character’s behavior

depending on different inputs.

 To produce these results, the Animation Blueprint makes use of Unreal’s various

advanced animation tools. These tools include State Machines, Animation Blending, and

Aim Offsets. This section will cover each of these tools, what they are, how they are

normally used, and what specifically makes them beneficial for animating animatronics.

The default Animation Blueprint for Unreal’s mannequin character

 24

State Machines

What is this feature?
 State Machines make up the “brain” of the Animation Blueprint and contain the

roadmap for which animation to play and when. This allows the character to respond in

real-time to various inputs. A State Machine lives inside the Animation Blueprint and

consists of a network of states and transition rules. Each state contains an output node

labeled “Output Animation Result”. Here we can connect an animation sequence from our

list of available sequences to the

output node. This means that while

the character is in that state, it will

be playing that linked animation.

We can also change the behavior of

the animation by selecting it in the

grid and editing the settings in the Details panel to the right. This includes behaviors such

as starting frame, playback rate, and whether or not to loop.

Transition rules contain the logic to switch between animation states. These often include

Boolean variables that are manipulated by other blueprints to indicate when it is time to

switch states. Once the parameter “Can Enter Transition” has been passed a “true” value,

the character will switch to the next linked state in the direction of the Transition Rule.

A State Machine within an Animation Blueprint containing various actions for a playable character

Each state contains the animation that will play while in that

state

 25

A Transition Rule that will return true if the player character is stationary and the current animation has

finished playing

How is this feature normally used in game development?
State Machines are often used to link the playable character’s animations with the

input received from the player. This can include playing running and jumping animations

when the player uses their game controller to move the character around. It is also useful

for handling transitionary animations. This often occurs when an animation loop of

variable time needs to play. A common example is a jump animation. This animation looks

like one smooth motion, but it’s actually made up of three separate Animation Sequences:

jump, falling, and land. The amount of time that a character is falling and, therefore, needs

to loop the falling animation, will depend on how high of a platform they jumped from.

State Machines allow developers to smoothly transition and loop the fall animation until

the character hits the ground. Jump, fall, and land exist as separate states often with the

flags “isJumping” and “isFalling” set by the pawn’s blueprint in the Transition Rules.

From left to right: two frames of jump animation, one frame of fall, and one frame of land

 26

What problem does this solve for Animatronics?
By giving our character a brain, we’re able to interact with them in real-time. Like

most animatronics controls of the modern age, each company has their own way of

creating these animation features – such as state machines. This often involves a

developer(s) programming a state machine the traditional way. It’s not too difficult to do

but since Unreal provides the necessary grunt work of doing the math to blend and play

the animation sequences, it allows developers to focus more on the final outcome behavior

rather than the mathematical way to achieve it.

How was this used in my thesis demonstration?
For the Pebble Game, I used a state machine to determine Bean Bag’s animations

based on the joystick’s inputs. As the player maneuvered Bean Bag around the level, the

level blueprint read the players inputs and relayed that information back to Bean Bag’s

animation blueprint via its Boolean variables. As those variables updated, the state

machine would transition to the appropriate state and thus play the corresponding

animation on our character.

Bean Bag’s State Machine

 27

Animation Blending

A simple state machine showing the blend settings between Walk/Run and Idle

What is this feature?
 Animation Blending is a simple tool that allows the developer to smoothly transition

between the end of one animation and the start of the next. This includes looping between

animations and interrupting one animation to begin another.

 The blend settings are found by selecting one of the Transition Rules in the State

Machine and looking in the “Details” panel to the right. There are plenty of settings to

customize blends, but I chose to use the sinusoidal mode for my character. This results in a

blend that accelerates between positions at a sinusoidal rate and is one of the most

common mathematical ways of blending animatronics’ motion in general. I also varied the

duration of the blend depending on the animation. I tweaked this number by trial and error

until I found a realistic result.

How is this feature normally used in game development?
 Animation Blending is one of the most commonly used animation tools. Any time

the player character jumps, sprints, stops, and crouches, an Animation Blend is used to

smoothly transition between those actions. It’s also commonly seen when a player

approaches and talks to an NPC. Blending lets the NPC seamlessly transition from their idle

animation to their talking animation.

What problem does this feature solve for Animatronics?
 Just as an NPC would “jump” between animations in an unnatural manner without

Animation Blending, an Animatronic figure would jerk. Not only does this result in an

unnatural movement, but it can lead to motor damage if the difference between starting

and ending positions is great enough. Usually if an Animatronic controller doesn’t have a

blending function, then the character must start and end in the exact same pose. This is

fine if a character is merely looping through one animation but can present challenges if

that animation needs to be interrupted at any given point.

 28

 As with State Machines, developers will often code their own blend functions to

achieve the same results. However, just as Unreal provides the necessary work to provide

State Machine functionality, Unreal has also already done all of the necessary work to

create blend functions – thus saving precious time for the developer.

How was this used in my thesis demonstration?
Every time Bean Bag started and stopped moving, picked up a pebble, deposited a

pebble, and switched between any other action, an animation blend was used to smooth

the transition between those animated states. Each blend was created and tweaked via the

details panel each transition rule in the animation state machine.

Blend settings used in one of Bean Bag’s transition rules.

 29

Aim Offsets

AnAim Offset affecting the direction in which a character is looking while their idle animation plays

What is this feature?
Aim Offsets provide a quick and easy way to control the direction in which an

animation is focused. An Aim Offset asset is essentially a graph containing various

animation sequences with each axis of the graph controlling the weight of influence that

the closest animation asset has on the main animation currently playing on the character.

Unlike a Blend Space — in which the graph is meant to serve as a gradient between entirely

different animations — Aim Offsets use Additive Animation Blending to merely influence the

way that a certain animation asset is behaving.

For example, a Blend Space may be used to adjust how much of the “walk” versus

“run” animation should be playing based on the speed that a character is moving. An Aim

Offset may be used to control the direction in which a character is aiming their gun while

that walk or run animation is playing.

A Blend Space with a “walk” and “run” animation showing how the value of the X axis on the graph

(noted by the green arrow) affects the output animation.

 30

Also, unlike a Blend Space, an Aim Offset

often uses animation assets consisting of

only one frame. To create these single

frame assets, developers often make

duplicates of the base animation that they

want to affect and delete all but the first

frame. They then manipulate and key

frame the desired bones to create the

poses that will influence the final

character’s animation. Oftentimes, this

means creating a pose for facing the left

direction, and one facing the right. These

poses – or single frame animation assets

– are then given the correct additive

settings in the Asset Details panel and

added to our Aim Offset. The picture to

the right shows an example of this single frame animation using the default mannequin

character. In this asset, the mannequin has been posed looking to the left with another

asset created for the mannequin to look to the right. Both of these assets are then

additively blended onto the mannequin’s idle animation via the Aim Offset. The final result

is an idle animation that can be naturally and dynamically directed to face a desired way.

How is this feature normally used in game development?
 One of the most common uses for Aim Offsets, and the feature they were named

for, is allowing a character to aim a gun in a direction independent of the currently playing

animation. This means that no matter if the player is running, jumping, or standing still, the

character can look around and aim their gun in any direction.

 Another common use for an Aim Offset is to allow character’s heads to follow

certain directions. This can often be seen when approaching NPC’s in modern games. The

NPC’s head will usually follow a player as the player moves around them.

What problem does this feature solve for Animatronics?
 It’s extremely useful to be able to direct an animatronic’s animation towards various

points in real-time. If someone is supposed to be interacting with a figure, it would be quite

unnatural for the figure to not be looking at them while they interact. In the past, some

animatronic programmers have resorted to creating entirely separate animations for each

A single frame animation of a character looking to the

left. The additive settings have been set to “Mesh

Space” with our desired base animation asset selected

below

 31

of the directions that the animatronic needs to look. This is extremely inefficient and can be

easily accomplished by using Unreal’s Aim Offsets.

How was this used in my thesis demonstration?
As Bean Bag moves around the level,

his head and body twist to point in the

direction of the joystick. This is done

using an Aim Offset affecting his head

turn and chest turn functions. The Aim

Offset axis values are updated in the

Animation Blueprint by the values read

from the joystick’s twist axis. I also

used an Aim Offset to aid in his

girlfriend’s reactions, allowing her to respond in his direction when he is near. This helps

create a natural connection between the two when they interact.

Bean Bag’s Aim Offset implemented in his Animation

Blueprint.

 32

Chapter 4: Conclusion

 33

With this thesis I was able to explore several ways that the Unreal Engine could aid

in animatronic controls--specifically by providing robust animation tools to aid in creating

the final movement of my figure. The animation tools I focused on include State Machines,

Animation Blending, and Aim Offsets. While these animation tools provided me with

everything I needed to create my interactive game, there are plenty of other animation

tools and capabilities that Unreal provides. I didn’t end up using them for my thesis, but

they could be very useful for other kinds of animatronic projects.

Aim Offsets let me point Bean Bag in the direction that he was moving, but Blend

Spaces and the “Layered Blend by Bones” could also be used to dynamically influence a

base animation. These could be used to create an interactive gradient between animation

assets or alter an animation only on a selected part of the figure. An example use could be

incrementally using more of a running animation instead of a walking animation depending

on how fast the character is going.

 While there are many more tools in Unreal to explore, there are even more

possibilities for their uses. One of these uses could be to aid in live puppeteering. Instead

of the traditional way of controlling each individual motor to create the final look of the

figure, a puppeteer could use something like a game controller and Unreal to influence the

motions and behavior of the puppet in a much more intuitive and natural way. The inputs

from the game controller, instead of directly altering the motion of a single motor, could be

used as inputs for the Animation Blueprint. Simple motions like moving a joystick left and

right or pressing a single button could result in complex motions from the figure. This

makes it much easier to learn and perform on the puppet and can lead to much more

complex figures being controlled by a single puppeteer.

 Unreal provides so many potential improvements for the field of animatronic

controls and I believe the possibilities will continue to grow as the technology improves.

Perhaps Unreal’s physics simulations could be used to create even more realistic reactions

on a real-world figure. Maybe Unreal and NDI’s real-time video streaming could greatly aid

in creating reactive emotions on figures with projected faces. As the themed entertainment

industry looks towards expanding the stories we can tell with animatronics, I believe that

Unreal can provide the necessary tools to make those stories a reality.

 34

Glossary of Terms
Actor – An Unreal object that is instantiated by being placed in the level.

Animation Blueprint – A roadmap in Unreal for which animation to play on a character,

how to play it, and when.

Blueprint - A term Unreal uses to refer to their visual programming files.

Blueprint Grid - The window panel displaying nodes and their connections in a blueprint.

Bulk Write - A function provided by Dynamixel to write to multiple servos using only one

instruction packet.

Checksum – A sequence generated by running an algorithm on a piece of data in order to

verify that the data is complete and unaltered.

Dynamixel – A brand of servo motor that uses serial communication to read and write

values to its memory.

Event Tick – The “heartbeat” of the Unreal game

Level Blueprint - The main blueprint associated with the level (or “map”) of your game.

Mesh – Geometry of a virtual object.

Node – A visual piece of code that is added to a blueprint. These can include functions,

variables, operators and more.

Non-Player Character (NPC) – A character in a video game that is not controlled by the

player.

Pawn – An actor that can be possessed and controlled by a player.

Serial Communication – a communication protocol in which data is sent one bit at a time,

often over a bus of wires.

Skeletal Mesh – An asset in Unreal containing a rigged character.

UDP – A kind of network protocol often used to stream or broadcast information.

 35

Works Cited

Epic Games. Unreal Engine 5 opens new doors for architectural visualization. Unreal Engine.

https://www.unrealengine.com/en-US/blog/unreal-engine-5-opens-new-doors-for-

architectural-visualization :

Epic Games. USA’s largest car maker builds HMI systems in Unreal Engine Unreal Engine.

https://www.unrealengine.com/en-US/blog/usa-s-largest-car-maker-builds-hmi-

systems-in-unreal-engine

Industrial Light & Magic. “The Virtual Production of the Mandalorian Season One” YouTube,

23 February, 2024, https://www.youtube.com/watch?v=gUnxzVOs3rk&t=1s

Parzival. “Meerkat Short Film from Weta Digital | Unreal Engine 4” YouTube, 23 February,

2024, https://www.youtube.com/watch?v=Pf4TwsBggdY

“P-p-pick up a Perfect Penguin Pebble | Edinburgh Zoo.” Edinburgh Zoo, 3 Feb. 2017,

www.edinburghzoo.org.uk/news/article/12549/p-p-pick-up-a-perfect-penguin-

pebble

Walt Disney Company. “Walt Disney Interacts with an Audio-Animatronics Tiki Bird”

ResearchGate, www.researchgate.net/figure/Walt-Disney-interacts-with-an-Audio-

Animatronics-Tiki-bird-in-The-Enchanted-Tiki-Room_fig1_220475304.

 36

	thesis_title
	Alvord_Animatronics_Thesis

